
Absolument. Voici les commandes et les commentaires pour la section A.3, qui explore la
gestion de l'a!nité des IRQs pour optimiser les performances, notamment réseau.

 A.3 A!nité et isolement (optionnel si sudo)

Ce"e section nécessite généralement les droits sudo pour désactiver des services ou modi#er
des paramètres noyau.

Tester irqbalance activé/désactivé

1. Rôle d'irqbalance

Le service irqbalance est un démon qui surveille l'utilisation des IRQs sur un système SMP
(multiprocesseur symétrique). Son objectif est d'équilibrer dynamiquement la charge
d'interruption entre tous les cœurs CPU disponibles, en essayant de respecter l'a!nité de
cache et la topologie NUMA pour maximiser le débit et la réactivité du système.

2. Commandes et Scénarios

Action Commande Commentaire
Véri!er l'état systemctl status irqbalance Indique si le service est actif

ou inactif.
Désactiver le service sudo systemctl stop irqbalance Permet d'observer la gestion

par défaut du noyau (souvent
centralisée sur CPU0).

Réactiver le service sudo systemctl start
irqbalance

Restaure l'équilibrage
dynamique.

Observer l'e%et watch -n 0.5 'grep eth0
/proc/interrupts'

Comparez la répartition des
compteurs IRQ (e.g., eth0 ou
votre IRQ réseau) : ils devraient
être #xes après désactivation,
et se répartir entre les cœurs
avec irqbalance activé et sous
charge.

Commentaire :
● Avec irqbalance activé : Les IRQs réseau sont distribuées entre les CPUs, évitant un
point de saturation (généralement CPU0) et améliorant le débit réseau global.
● Avec irqbalance désactivé : La gestion redevient statique ou simple. Souvent, la
majeure partie de la charge IRQ réseau se retrouve sur un seul CPU (souvent le premier,
CPU0). Cela peut créer un goulot d'étranglement (CPU hot spot), limitant le débit

Oui

NON, MERCI

TÉLÉCHARGER L'APPLICATION

Modifiez vos documents à l'aide de
l'application Docs
Peaufinez vos diapositives, publiez des
commentaires et partagez votre présentation
pour la modifier en collaboration avec d'autres
personnes.

28/10/2025 16:37
Page 1 sur 3

maximal a"eignable et augmentant la latence sous forte charge car ce CPU est
monopolisé par le traitement des interruptions.

Pinner un processus réseau sur un CPU

Ce test vise à démontrer le béné#ce de la co-localisation : s'assurer que le thread applicatif
qui consomme les données réseau s'exécute sur le même CPU que celui qui gère les
interruptions et les So&IRQs associées à la réception des données.

1. Préparation (Isolement de l'IRQ)

Pour un contrôle optimal, l'IRQ réseau utilisée par le test doit être isolée sur un CPU spéci#que
(e.g., CPU 2).

● Identi!er l'IRQ réseau : Supposons l'IRQ 24 (comme dans l'exemple A.2) gère la
réception.
● Déterminer le masque d'a"nité : Pour a%ecter l'IRQ uniquement au CPU 2, le
masque binaire est 0100 (bit 2 est à 1), ce qui correspond à la valeur hexadécimale 4.

Bash

Assurez-vous que irqbalance est arrêté pour éviter qu'il ne modi#e votre réglage.
sudo systemctl stop irqbalance

Isoler l'IRQ 24 sur le CPU 2 (masque hexadécimal 4)
echo 4 | sudo tee /proc/irq/24/smp_a!nity

2. Exécution des tests Taskset + iperf3

Test A : Co-localisation (IRQ et Thread sur CPU 2)
Bash

1. Le serveur iperf3 est forcé de s'exécuter sur le CPU 2 (taskset -c 2).
C'est le CPU qui gère l'IRQ réseau (selon l'étape de préparation).
taskset -c 2 iperf3 -s &

2. Le client iperf3 (local) s'exécute sur le CPU 3 (taskset -c 3) pour éviter d'in'uencer le
serveur.
L'interface loopback (127.0.0.1) est utilisée pour un test purement CPU.
taskset -c 3 iperf3 -c 127.0.0.1 -t 10
Test B : Sans Taskset (Répartition par défaut)
Bash

1. Le serveur s'exécute sur n'importe quel CPU disponible (selon le scheduler).
iperf3 -s &

2. Le client s'exécute sur n'importe quel CPU.
iperf3 -c 127.0.0.1 -t 10

28/10/2025 16:37
Page 2 sur 3

3. Analyse de la Co-localisation

Scénario Débits (Taskset) Latence / Ji#er Explication
Co-localisation (Test
A)

Élevés (meilleurs) Faibles (meilleurs) Le thread iperf3 -s
s'exécute sur CPU 2.
Les paquets arrivent
(IRQ 24) et sont traités
par les So&IRQs sur
CPU 2. Les données
sont déjà présentes
dans le cache L1/L2
de CPU 2. Le thread
peut y accéder sans
délai de migration
inter-cœur.

Sans Taskset (Test B) Inférieurs Plus élevés Le thread iperf3 -s
peut être plani#é sur
CPU 1 (par exemple),
tandis que l'IRQ est
traitée par CPU 2.
Chaque fois que le
thread doit lire les
données du paquet, il
doit faire face à une
faute de
cache (cache miss),
nécessitant une
coûteuse migration
de cache entre les
cœurs.

Discussion :
L'expérience démontre que l'alignement des IRQs et des threads de traitement sur le
même cœur (co-localisation) est une technique d'optimisation cruciale pour les applications
à haute performance (HPC, trading, virtualisation).

1. Réduction des "Cache Misses" : En maintenant le traitement de l'IRQ, la So&IRQ, et
le thread utilisateur sur le même CPU, on maximise l'a"nité de cache. Le CPU gérant
l'interruption charge les données du paquet dans son cache, et le processus utilisateur
peut y accéder immédiatement.
2. Minimisation de la Latence : L'élimination des transferts de données coûteux entre
les caches des CPUs réduit considérablement la latence de traitement des paquets, ce
qui se traduit par un meilleur débit et un ji"er (variation de latence) plus faible.

28/10/2025 16:37
Page 3 sur 3

