< Oui /‘

Absolument. Voici les commandes et les commentaires pour la section A.3, qui explore la
gestion de I'affinité des IRQs pour optimiser les performances, notamment réseau.

11 A.3 Affinité et isolement (optionnel si sudo)

Cette section nécessite généralement les droits sudo pour désactiver des services ou modifier
des parameétres noyau.

Tester irgbalance activé/désactivé

1. Role d'irgbalance

Le service irgbalance est un démon qui surveille I'utilisation des IRQs sur un systeme SMP
(multiprocesseur symétrique). Son objectif est d'équilibrer dynamiquement la charge
d'interruption entre tous les coeurs CPU disponibles, en essayant de respecter I'affinité de
cache et la topologie NUMA pour maximiser le debit et la réactivité du systéeme.

2. Commandes et Scénarios

Action Commande Commentaire

Vérifier |'état systemctl status irgbalance Indique si le service est actif
ou inactif.

Désactiver le service sudo systemctl stop irgbalance|Permet d'observer la gestion

par défaut du noyau (souvent
centralisée sur CPUO).

Réactiver le service sudo systemctl start Restaure |'équilibrage
irgbalance dynamique.
Ahenrne llnfint wintkoh on AR laran athn Comparez la répartition des
compteurs IRQ (e.g., ethO ou
a Modifiez vos documents a l'aide de votre IRQ réseau) : ils devraient
I'application Docs etre ﬁx,es apres désactivation,
et se répartir entre les coeurs
Peaufinez vos diapositives, publiez des avec irgbalance activée et sous
commentaires et partagez votre présentation charge.
pour la modifier en collaboration avec d'autres
personnes.

istribuées entre les CPUs, évitant un
NON, MERCI rant le débit réseau global.

1t statique ou simple. Souvent, la

sur un seul CPU (souvent le premier,

. (CPU hot spot), limitant le débit
TELECHARGER L'APPLICATION

_ forte Charge car ce CPU est

Pinner un processus réseau sur un CPU

Ce test vise a démontrer le bénéfice de la co-localisation : s'assurer que le thread applicatif
qui consomme les données réseau s'exeécute sur le méme CPU que celui qui gere les
interruptions et les SoftIRQs associées a la réception des données.

1. Préparation (Isolement de I'IRQ)

Pour un contréle optimal, I'IRQ réseau utilisée par le test doit étre isolée sur un CPU spécifique
(e.g., CPU 2).
e Identifier I'lRQ réseau : Supposons I'IRQ 24 (comme dans I'exemple A.2) gére la
réception.
e Déterminer le masque d'affinité : Pour affecter I''RQ uniquement au CPU 2, le
masque binaire est 0100 (bit 2 est a 1), ce qui correspond a la valeur hexadécimale 4.

Bash

Assurez-vous que irgbalance est arrété pour éviter qu'il ne modifie votre réglage.
sudo systemctl stop irgbalance

Isoler I'IRQ 24 sur le CPU 2 (masque hexadécimal 4)
echo 4 | sudo tee /proc/irq/24/smp_affinity

2. Exécution des tests Taskset + iperf3

Test A : Co-localisation (IRQ et Thread sur CPU 2)
Bash

1. Le serveur iperf3 est forcé de s'exécuter sur le CPU 2 (taskset -c 2).
C'est le CPU qui gére I'IRQ réseau (selon I'étape de préparation).
taskset -c 2 iperf3 -s &

2. Le client iperf3 (local) s'exécute sur le CPU 3 (taskset -c 3) pour éviter d'influencer le
serveur.

L'interface loopback (127.0.0.1) est utilisée pour un test purement CPU.

taskset -c 3 iperf3 -¢ 127.0.0.1 -t 10

Test B : Sans Taskset (Répartition par défaut)

Bash
1. Le serveur s'exécute sur n'importe quel CPU disponible (selon le scheduler).
iperf3 -s &

2. Le client s'exécute sur n'importe quel CPU.
iperf3 -¢ 127.0.0.1 -t 10

3. Analyse de la Co-localisation

Scénario I?ébits (Taskset) Latence / Jitter Explication
Co-localisation (Test [Elevés (meilleurs) Faibles (meilleurs) Le threadiperf3 -s
A) s'exécute sur CPU 2.

Les paquets arrivent
(IRQ 24) et sont traités
par les SoftIRQs sur
CPU 2. Les données
sont déja présentes
dans le cache L1/L2
de CPU 2. Le thread
peut y acceder sans
delai de migration
inter-coeur.

Sans Taskset (Test B) [Inférieurs Plus élevés Le threadiperf3 -s
peut étre planifié sur
CPU 1 (par exemple),
tandis que I'IRQ est
traitée par CPU 2.
Chaque fois que le
thread doit lire les
données du paquet, il
doit faire face a une
faute de

cache (cache miss),
nécessitant une
colteuse migration
de cache entre les
coeurs.

Discussion :
L'expérience démontre que I'alignement des IRQs et des threads de traitement sur le
méme cceur (co-localisation) est une technique d'optimisation cruciale pour les applications
a haute performance (HPC, trading, virtualisation).
1. Réduction des “"Cache Misses" : En maintenant le traitement de I'IRQ, la SoftIRQ, et
le thread utilisateur sur le méme CPU, on maximise |'affinité de cache. Le CPU gérant
I'interruption charge les données du paquet dans son cache, et le processus utilisateur
peut y accéder immédiatement.
2. Minimisation de la Latence : L'élimination des transferts de données colteux entre
les caches des CPUs réduit considérablement la latence de traitement des paquets, ce
qui se traduit par un meilleur débit et un jitter (variation de latence) plus faible.

