< Section A — Interruptions s... /

L1 Section A — Interruptions sous Linux

A.1 Concepts (synthése)

Les interruptions sont un mécanisme essentiel permettant aux périphériques matériels ou au
logiciel de signaler au CPU qu'un événement s'est produit et nécessite une attention
immédiate.
e Interruptions matérielles (IRQs) : Générées par des periphériques physiques (carte
réseau, disque, timer, etc.) via le controleur d'interruption (PIC/APIC). Elles sont
asynchrones et peuvent survenir a tout moment, interrompant I'exécution courante du
CPU.
e SoftIRQ@s : Mécanisme de "bottom-half" (seconde moitié) dans le noyau Linux. Elles
sont synchrones et ne peuvent étre déclenchées que par le noyau lui-méme (souvent a
la fin d'un handler d'IRQ mateérielle) pour effectuer des taches différées qui prennent
trop de temps, comme le traitement des paquets réseau (NET_RX). Elles s'exécutent
dans un contexte spécial (contexte softirg), mais pas dans celui d'un processus.
e Handlers / ISRs (Interrupt Service Routines) : Fonctions du noyau appelées pour
traiter une interruption. Les handlers d'IRQs matérielles sont exécutés dans un contexte
de haute priorité ("top-half"), ou les interruptions de méme ou de plus faible priorité
sont souvent masquées (désactivées) pour garantir une exécution rapide.
e Latence d'interruption : Temps écoulé entre I'arrivée d'un signal d'interruption au
CPU et le début de I'exécution du handler d'interruption correspondant. Une faible
latence est cruciale pour les systemes temps réel ou le réseau.
e Masquage/Priorités : Mécanisme pour gérer les interruptions. Le
masquage (désactivation temporaire) empéche certaines IRQs d'étre traitées, souvent
dans le top-half pour éviter les réentrances et simplifier la synchronisation. Les
interruptions ont des priorités (gérées par I'APIC) : une interruption de priorité
supérieure peut interrompre un handler de priorité inférieure si celui-ci n'est pas

masqueé.
. Context Swntch (Changement de Contexte) : Mécanisme par lequel le CPU passe de
Hoavdandine Al mvnnnnnin fhrand & vin ~nden Aembegirement a une interruption qui ne fait
3s le handler, un changement de
Modifiez vos documents a I'aide de lu processus courant et le
I'application Docs ftIRQs et les handlers d'IRQs ne
)cessus.
Peaufinez vos diapositives, publiez des nent réseau pour réduire la surcharge
commentaires et partagez votre présentation ors de fortes charges. Au lieu de
pour la modifier en collaboration avec d'autres Itilise un mécanisme de
personnes. lecter et traiter plusieurs paquets en
otion coliteux vers le contexte
1atérielles.
NON, MERCI
nmenter)

TELECHARGER L'APPLICATION

.] et —r f—— rm = — = —— e —— = —

Exécution:

Bash

grep . /proc/interrupts | head -n 40
cat /proc/softirgs
Exemple de sortie grep . /proc/interrupts | head -n 40 :

CPUO CPU1 CPU2 CPU3

0O: 26 0 0 O IO-APIC-edge timer

1: 2 0] 0] O 10-APIC-edge 8042

8: 1 0 0 O I0-APIC-edge rtcO

16: 2083451 54012 15034 14002 IO-APIC-fasteoi nvmeOn1

24: 987654 1001234 998765 999001 PCI-MSl-edge ethO-rx-0

25: 0 0 0 O PCI-MSl-edge ethO-tx-0

26: 1543210 0 0 O PCI-MSIl-edge mlx4-comp-0

27: O 1543210 0] O PCI-MSl-edge mlx4-comp-1

Commentaire :

Le fichier /proc/interrupts affiche les compteurs d'interruptions matérielles (IRQs) par

numéro d'IRQ et par CPU (CPUO, CPU1, etc.).
¢ IRQ Disque (NVMe/SATA) : Dans cet exemple, IRQ 16 est associée a nvmeOn1. On
observe une concentration des interruptions sur le CPUQ, ce qui est courant par défaut
sur certaines architectures ou si irgbalance est désactiveé.
¢ IRQ Réseau (ethO) : L'IRQ 24 est identifiee comme ethO-rx-0. Les cartes réseau
modernes utilisent souvent le Message Signaled Interrupts (MSI/MSI-X), permettant
d'assigner plusieurs IRQs a un seul périphérique (comme ethO-rx-0, ethO-tx-0, etc.)
pour améliorer la répartition de la charge sur différents CPUs (Scalable 1/0). On note ici
que I'IRQ 24 est activement distribuée sur les 4 CPUs.

Exemple de sortie cat /proc/softirgs :

CPUO CPU1 CPU2 CPU3
HI: 0] 0 0 0]

TIMER: 20000000 20000000 20000000 20000000

NET TX: 150000 150000 150000 150000

NET_RX: 5000000 5000000 5000000 5000000

BLOCK: 300000 300000 300000 300000

IRQ_POLL: 0 0 0 0
TASKLET: 1000000 1000000 1000000 1000000
SCHED: 20000000 20000000 20000000 20000000
Commentaire :
Le fichier /proc/softirgs affiche les compteurs de SoftIRQs par type (TIMER, NET_RX, NET TX,
etc.) et par CPU. Elles représentent le travail différé (bottom-half). NET_RX (Network Receive)
et NET_TX (Network Transmit) sont cruciales pour le réseau. On observe une répartition
équilibrée des SoftIRQs sur les CPUs.

o Affinité des IRQ (SMP)

Exécution : (Supposons que I'IRQ réseau est 24 comme dans I'exemple)

Bash

IRQ=24
cat /proc/irg/$IRQ/smp_affinity_list
Exemple de sortie cat /proc/irq/24/smp_affinity_list :

0-3

(Indique que I'IRQ 24 peut étre traitée par les CPUs O, 1, 2 et 3).

Explication de l'intérét d’assigner une IRQ réseau a un CPU local :

Dans un systeme Symmetric Multiprocessing (SMP) avec plusieurs CPUs et souvent

plusieurs cartes réseau ou files d'attente (RX/TX queues) par carte, |'affinité d'IRQ permet de

désigner quel CPU doit traiter une IRQ donnée.

L'intérét principal d'assigner une IRQ réseau a un CPU local a la file RX/TX est de garantir la

co-localisation des donneées et des traitements :
1. Meilleure performance du cache (Cache Affinity) : Le traitement (handler d'IRQ,
SoftIRQ) du paquet se déroule sur le méme CPU qui a peut-étre déja des données liees
au flux réseau dans son cache (L1/L2). Cela réduit les cache misses et évite le colt
éleve de la migration de cache entre les CPUs (appelé cache coherency overhead).
2. Réduction des latences NUMA : Sur les architectures Non-Uniform Memory
Access (NUMA), si la carte réseau est connectée a un socket CPU (Node) particulier, il
est plus rapide de traiter I''RQ sur un CPU de ce méme socket car |'accés a la mémoire
associee a la carte réseau sera plus rapide (local memory access).
3. Eviter les "Hot Spots" : La répartition des IRQs sur différents CPUs empéche un seul
CPU d'étre surchargé, ameéliorant la capacité de débit globale. Le mécanisme RPS
(Receive Packet Steering), qui s'appuie sur I'affinité, permet de distribuer davantage le
traitement des paquets au-dela de la simple IRQ.

~ Générer une charge IRQ (réseau local)

Exécution:

Bash

Dans une fenétre A

ping -f -¢ 2000 127.0.0.1

Dans une fenétre B, a lancer avant

watch -n1 ‘cat /proc/softirgs | sed -n "1p;/NET_RX/p
Exemple d'observation de NET RX :

Temps CPUO (Avant) |[CPU1 (Avant) |... CPUO CPU1
(I:)endant Ping (I:endant Ping

T0 5,000,000 5,000,000 5,000,000 5,000,000

T1 5,000,000 5,000,000 5,001,500 5,001,490

T2 5,000,000 5,000,000 5,003,100 5,003,050

T3 5,000,000 5,000,000 5,004,700 5,004,680

Commentaire sur I'évolution de NET_RX et la répartition par CPU :
1. Augmentation de NET_RX : Pendant le ping -f (qui génere un flux rapide de paquets
ICMP Jocalement via l'interface loopback), le nombre de Soft/IRQs de type
NET_RX augmente rapidement et de maniére significative. Le loopback est extrémement
rapide et génere beaucoup de travail de traitement de paquets (méme si aucune IRQ
matérielle n'est impliquée).
2. Répartition Equilibrée : On observe que les compteurs NET_RX augmentent sur tous
les CPUs (CPUO, CPU1, etc.). Cela indique que le noyau Linux répartit efficacement la
charge de traitement des paquets recus (I'exécution des SoftlRQs NET_RX) sur les
différents coeurs disponibles pour éviter la saturation d'un seul coeur, maximisant ainsi le
debit de la boucle locale.

A.4 Question guidée

Que se passe-t-il si un handler est « trop long » ?
Si la partie « top-half » d'un handler d'interruption matérielle (ISR) prend trop de temps, cela
a des consequences graves sur la réactivité du systeme :
e Impacts sur la Latence Globale :
o Augmentation de la Latence d'Interruption : Tant que le handlerlong
s'exécute, il bloque le traitement de toutes les autres interruptions de méme ou
de plus faible priorité (car elles sont généralement masquées dans le top-half). Le
temps de réponse a ces autres événements (e.g., autre périphérique, timer,
scheduler) est considérablement retardeé.
o Impact sur le Scheduler : Le handler s'exécute dans un contexte de haute
priorite, empéchant le scheduler de reprendre la main. Les processus
utilisateurs et méme les processus noyaux bas-niveau sont mis en attente, ce qui
rend le systéme lent ou non réactif.
e Perte de Paquets/Evénements :
o Pour les cartes réseau, si un handler est trop long, le CPU met trop de temps a
vider les tampons du controleur réseau. Si le matériel recoit de nouveaux paquets
pendant ce temps et que ses tampons sont pleins, il doit jeter les paquets (perte
de paquets).
o Méme probléme pour les disques ou d'autres périphériques rapides.
L'événement (e.g., completion) est manqué ou retarde.
Solutions pour les Handlers Trop Longs :
La régle d'or pour un top-halfest d'étre le plus court possible. Le travail intensif doit étre
déféré (reporté) a une autre phase, appelée bottom-half.
1. Déférer en Bottom-Half (SoftIRQs, Tasklets, Workqueues) :
o Le top-half se contente d'acquitter l'interruption, de lire rapidement les registres
et de planifier I'exécution d'un bottom-half.
o SoftIRQs : Mécanisme trés rapide et réentrant (peut s'exécuter sur plusieurs
CPUs simultanément) pour les taches critiques comme le réseau (NET_RX). Elles
s'exécutent dans un contexte d'interruption.
o Tasklets : Construits sur les SoftIRQs, plus simples et non réentrants pour un
méme Tasklet (ne peuvent s'exécuter que sur un seul CPU a la fois).
o Workqueues : Déférent le travail a un contexte de processus (un thread noyau
dédié). Cela permet d'utiliser des fonctions qui peuvent dormir (sleep) (comme les
mutex, 'allocation mémoire bloquante), ce qui est interdit dans le contexte
SoftIRQ/Tasklet. Idéal pour les taches plus complexes et moins sensibles a la
latence.
2. NAPI (New API) pour le Réseau :
o C'est la solution moderne au probleme de la surcharge d'IRQs réseau. Apres une

premiéere IRQ, NAPI désactive l'interruption du périphérique et bascule en mode
sondage (polling) via I'exécution d'une SoftiIRQ NET_RX.

o Le NET_RX SoftIRQ collecte un maximum de paquets en bloc et les traite
avant de se terminer. Si la file RX est vide, l'interruption du périphérique est
réactivée.

o Ceci réduit la fréquence des IRQs matérielles et déplace le travail lourd de
gestion des paquets dans le contexte SoftIRQ plus approprié.

Souhaitez-vous que je vous fournisse les commandes détaillées et les explications pour la
section A.3 sur I'Affinité et I'lsolement des IRQ (qui nécessite sudo)?

