
 Section A — Interruptions sous Linux

A.1 Concepts (synthèse)

Les interruptions sont un mécanisme essentiel perme!ant aux périphériques matériels ou au
logiciel de signaler au CPU qu'un événement s'est produit et nécessite une a!ention
immédiate.

● Interruptions matérielles (IRQs) : Générées par des périphériques physiques (carte
réseau, disque, timer, etc.) via le contrôleur d'interruption (PIC/APIC). Elles sont
asynchrones et peuvent survenir à tout moment, interrompant l'exécution courante du
CPU.
● So!IRQs : Mécanisme de "bo"om-half" (seconde moitié) dans le noyau Linux. Elles
sont synchrones et ne peuvent être déclenchées que par le noyau lui-même (souvent à
la #n d'un handler d'IRQ matérielle) pour e$ectuer des tâches di$érées qui prennent
trop de temps, comme le traitement des paquets réseau (NET_RX). Elles s'exécutent
dans un contexte spécial (contexte so%irq), mais pas dans celui d'un processus.
● Handlers / ISRs (Interrupt Service Routines) : Fonctions du noyau appelées pour
traiter une interruption. Les handlers d'IRQs matérielles sont exécutés dans un contexte
de haute priorité ("top-half"), où les interruptions de même ou de plus faible priorité
sont souvent masquées (désactivées) pour garantir une exécution rapide.
● Latence d'interruption : Temps écoulé entre l'arrivée d'un signal d'interruption au
CPU et le début de l'exécution du handler d'interruption correspondant. Une faible
latence est cruciale pour les systèmes temps réel ou le réseau.
● Masquage/Priorités : Mécanisme pour gérer les interruptions. Le
masquage (désactivation temporaire) empêche certaines IRQs d'être traitées, souvent
dans le top-half pour éviter les réentrances et simpli#er la synchronisation. Les
interruptions ont des priorités (gérées par l'APIC) : une interruption de priorité
supérieure peut interrompre un handler de priorité inférieure si celui-ci n'est pas
masqué.
● Context Switch (Changement de Contexte) : Mécanisme par lequel le CPU passe de
l'exécution d'un processus/thread à un autre. Contrairement à une interruption qui ne fait
qu'interrompre le &ux d'exécution et reprendre après le handler, un changement de
contexte implique la sauvegarde de l'état complet du processus courant et le
chargement de celui du nouveau processus. Les So!IRQs et les handlers d'IRQs ne
provoquent pas de changement de contexte de processus.
● NAPI (New API) : Amélioration majeure du traitement réseau pour réduire la surcharge
liée aux interruptions (appelée "interrupt storm") lors de fortes charges. Au lieu de
générer une IRQ pour chaque paquet reçu, NAPI utilise un mécanisme de
sondage (polling) après une première IRQ pour collecter et traiter plusieurs paquets en
bloc. Cela déplace le travail d'un contexte d'interruption coûteux vers le contexte
So!IRQs et réduit la fréquence des interruptions matérielles.

A.2 Observations système (exécuter et commenter)

Section A — Interruptions s…

NON, MERCI

TÉLÉCHARGER L'APPLICATION

Modifiez vos documents à l'aide de
l'application Docs
Peaufinez vos diapositives, publiez des
commentaires et partagez votre présentation
pour la modifier en collaboration avec d'autres
personnes.

28/10/2025 16:35
Page 1 sur 5

 Lister les IRQ et compteurs

Exécution :
Bash

grep . /proc/interrupts | head -n 40
cat /proc/so%irqs
Exemple de sortie grep . /proc/interrupts | head -n 40 :

 CPU0 CPU1 CPU2 CPU3
 0: 26 0 0 0 IO-APIC-edge timer
 1: 2 0 0 0 IO-APIC-edge i8042
 8: 1 0 0 0 IO-APIC-edge rtc0
16: 2083451 54012 15034 14002 IO-APIC-fasteoi nvme0n1
24: 987654 1001234 998765 999001 PCI-MSI-edge eth0-rx-0
25: 0 0 0 0 PCI-MSI-edge eth0-tx-0
26: 1543210 0 0 0 PCI-MSI-edge mlx4-comp-0
27: 0 1543210 0 0 PCI-MSI-edge mlx4-comp-1
Commentaire :
Le #chier /proc/interrupts a'che les compteurs d'interruptions matérielles (IRQs) par
numéro d'IRQ et par CPU (CPU0, CPU1, etc.).

● IRQ Disque (NVMe/SATA) : Dans cet exemple, IRQ 16 est associée à nvme0n1. On
observe une concentration des interruptions sur le CPU0, ce qui est courant par défaut
sur certaines architectures ou si irqbalance est désactivé.
● IRQ Réseau (eth0) : L'IRQ 24 est identi#ée comme eth0-rx-0. Les cartes réseau
modernes utilisent souvent le Message Signaled Interrupts (MSI/MSI-X), perme!ant
d'assigner plusieurs IRQs à un seul périphérique (comme eth0-rx-0, eth0-tx-0, etc.)
pour améliorer la répartition de la charge sur di$érents CPUs (Scalable I/O). On note ici
que l'IRQ 24 est activement distribuée sur les 4 CPUs.

Exemple de sortie cat /proc/so!irqs :

 CPU0 CPU1 CPU2 CPU3
 HI: 0 0 0 0
 TIMER: 20000000 20000000 20000000 20000000
 NET_TX: 150000 150000 150000 150000
 NET_RX: 5000000 5000000 5000000 5000000
 BLOCK: 300000 300000 300000 300000
 IRQ_POLL: 0 0 0 0
 TASKLET: 1000000 1000000 1000000 1000000
 SCHED: 20000000 20000000 20000000 20000000
Commentaire :
Le #chier /proc/so%irqs a'che les compteurs de So!IRQs par type (TIMER, NET_RX, NET_TX,
etc.) et par CPU. Elles représentent le travail di$éré (bo!om-half). NET_RX (Network Receive)
et NET_TX (Network Transmit) sont cruciales pour le réseau. On observe une répartition
équilibrée des So%IRQs sur les CPUs.

 A!nité des IRQ (SMP)

28/10/2025 16:35
Page 2 sur 5

Exécution : (Supposons que l'IRQ réseau est 24 comme dans l'exemple)
Bash

IRQ=24
cat /proc/irq/$IRQ/smp_a'nity_list
Exemple de sortie cat /proc/irq/24/smp_a#nity_list :

0-3
(Indique que l'IRQ 24 peut être traitée par les CPUs 0, 1, 2 et 3).
Explication de l'intérêt d’assigner une IRQ réseau à un CPU local :
Dans un système Symmetric Multiprocessing (SMP) avec plusieurs CPUs et souvent
plusieurs cartes réseau ou #les d'a!ente (RX/TX queues) par carte, l'a#nité d'IRQ permet de
désigner quel CPU doit traiter une IRQ donnée.
L'intérêt principal d'assigner une IRQ réseau à un CPU local à la #le RX/TX est de garantir la
co-localisation des données et des traitements :

1. Meilleure performance du cache (Cache A#nity) : Le traitement (handler d'IRQ,
So%IRQ) du paquet se déroule sur le même CPU qui a peut-être déjà des données liées
au &ux réseau dans son cache (L1/L2). Cela réduit les cache misses et évite le coût
élevé de la migration de cache entre les CPUs (appelé cache coherency overhead).
2. Réduction des latences NUMA : Sur les architectures Non-Uniform Memory
Access (NUMA), si la carte réseau est connectée à un socket CPU (Node) particulier, il
est plus rapide de traiter l'IRQ sur un CPU de ce même socket car l'accès à la mémoire
associée à la carte réseau sera plus rapide (local memory access).
3. Éviter les "Hot Spots" : La répartition des IRQs sur di$érents CPUs empêche un seul
CPU d'être surchargé, améliorant la capacité de débit globale. Le mécanisme RPS
(Receive Packet Steering), qui s'appuie sur l'a'nité, permet de distribuer davantage le
traitement des paquets au-delà de la simple IRQ.

 Générer une charge IRQ (réseau local)

Exécution :
Bash

Dans une fenêtre A
ping -f -c 2000 127.0.0.1
Dans une fenêtre B, à lancer avant
watch -n1 'cat /proc/so%irqs | sed -n "1p;/NET_RX/p"'
Exemple d'observation de NET_RX :
Temps CPU0 (Avant) CPU1 (Avant) ... CPU0

(Pendant Ping
-f)

CPU1
(Pendant Ping
-f)

T0 5,000,000 5,000,000 5,000,000 5,000,000
T1 5,000,000 5,000,000 5,001,500 5,001,490
T2 5,000,000 5,000,000 5,003,100 5,003,050
T3 5,000,000 5,000,000 5,004,700 5,004,680

28/10/2025 16:35
Page 3 sur 5

Commentaire sur l'évolution de NET_RX et la répartition par CPU :
1. Augmentation de NET_RX : Pendant le ping -f (qui génère un &ux rapide de paquets
ICMP localement via l'interface loopback), le nombre de So%IRQs de type
NET_RX augmente rapidement et de manière signi#cative. Le loopback est extrêmement
rapide et génère beaucoup de travail de traitement de paquets (même si aucune IRQ
matérielle n'est impliquée).
2. Répartition Équilibrée : On observe que les compteurs NET_RX augmentent sur tous
les CPUs (CPU0, CPU1, etc.). Cela indique que le noyau Linux répartit e'cacement la
charge de traitement des paquets reçus (l'exécution des So%IRQs NET_RX) sur les
di$érents cœurs disponibles pour éviter la saturation d'un seul cœur, maximisant ainsi le
débit de la boucle locale.

A.4 Question guidée

Que se passe-t-il si un handler est « trop long » ?
Si la partie « top-half » d'un handler d'interruption matérielle (ISR) prend trop de temps, cela
a des conséquences graves sur la réactivité du système :

● Impacts sur la Latence Globale :
○ Augmentation de la Latence d'Interruption : Tant que le handler long
s'exécute, il bloque le traitement de toutes les autres interruptions de même ou
de plus faible priorité (car elles sont généralement masquées dans le top-half). Le
temps de réponse à ces autres événements (e.g., autre périphérique, timer,
scheduler) est considérablement retardé.
○ Impact sur le Scheduler : Le handler s'exécute dans un contexte de haute
priorité, empêchant le scheduler de reprendre la main. Les processus
utilisateurs et même les processus noyaux bas-niveau sont mis en a!ente, ce qui
rend le système lent ou non réactif.

● Perte de Paquets/Événements :
○ Pour les cartes réseau, si un handler est trop long, le CPU met trop de temps à
vider les tampons du contrôleur réseau. Si le matériel reçoit de nouveaux paquets
pendant ce temps et que ses tampons sont pleins, il doit jeter les paquets (perte
de paquets).
○ Même problème pour les disques ou d'autres périphériques rapides.
L'événement (e.g., completion) est manqué ou retardé.

Solutions pour les Handlers Trop Longs :
La règle d'or pour un top-half est d'être le plus court possible. Le travail intensif doit être
déféré (reporté) à une autre phase, appelée bo"om-half.

1. Déférer en Bo"om-Half (So!IRQs, Tasklets, Workqueues) :
○ Le top-half se contente d'acqui!er l'interruption, de lire rapidement les registres
et de plani#er l'exécution d'un bo"om-half.
○ So!IRQs : Mécanisme très rapide et réentrant (peut s'exécuter sur plusieurs
CPUs simultanément) pour les tâches critiques comme le réseau (NET_RX). Elles
s'exécutent dans un contexte d'interruption.
○ Tasklets : Construits sur les So%IRQs, plus simples et non réentrants pour un
même Tasklet (ne peuvent s'exécuter que sur un seul CPU à la fois).
○ Workqueues : Défèrent le travail à un contexte de processus (un thread noyau
dédié). Cela permet d'utiliser des fonctions qui peuvent dormir (sleep) (comme les
mutex, l'allocation mémoire bloquante), ce qui est interdit dans le contexte
So%IRQ/Tasklet. Idéal pour les tâches plus complexes et moins sensibles à la
latence.

2. NAPI (New API) pour le Réseau :
○ C'est la solution moderne au problème de la surcharge d'IRQs réseau. Après une

28/10/2025 16:35
Page 4 sur 5

première IRQ, NAPI désactive l'interruption du périphérique et bascule en mode
sondage (polling) via l'exécution d'une So!IRQ NET_RX.
○ Le NET_RX So!IRQ collecte un maximum de paquets en bloc et les traite
avant de se terminer. Si la #le RX est vide, l'interruption du périphérique est
réactivée.
○ Ceci réduit la fréquence des IRQs matérielles et déplace le travail lourd de
gestion des paquets dans le contexte So%IRQ plus approprié.

Souhaitez-vous que je vous fournisse les commandes détaillées et les explications pour la
section A.3 sur l'A#nité et l'Isolement des IRQ (qui nécessite sudo)?

28/10/2025 16:35
Page 5 sur 5

